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The continuous time Schnute-Deriso delay-difference model for 
age-structured population dynamics, with example application to 

the Peru anchoveta stock 
 

By Carl J. Walters c.walters@oceans.ubc.ca 
 
The Schnute-Deriso delay-difference model (Deriso, 1980; Schnute 1985) provides an extremely 
compact representation of the exact dynamics of total numbers and biomass for age-structured 
populations where (1) there is knife-edge recruitment to the harvested (adult) population, i.e. 
fishing mortality rate is independent of age for fish aged ar and older; (2) natural mortality rate M 
is constant; and (3) body weight growth can be approximated by the Ford-Brody model for weight 
at age a, namely w(a)=α+ρw(a-1).  This growth model is only a good approximation for older ages, 
beyond the age at which weight growth rate begins to decline, but most harvested fish populations 
meet this condition. 

The discrete time delay-difference model for total exploitable biomass B(t) and numbers N(t), 
summed over ages k to infinity, is given by 

 B(t)=s(t-1)[ αN(t-1)+ρB(t-1)]+wkR(t)     (1) 

 N(t)=s(t-1)N(t-1)+R(t)      (2) 
where the overall survival rate s(t) for year t is given by 
 s(t)=e-M(1-u(t)) or s(t)=e-M-F 

Here, u(t) is the harvest rate in year t, and F is the instantaneous fishing rate applied over a short 
discrete time at the start of year t.  The main advantage of eqs. (1)-(2) over full age-structured 
accounting is that they can be solved very quickly for very large numbers of populations, e.g. in 
spatial grid models, without loss of age-structure effects on average size of fish harvested and on 
fecundity. 

This discrete-time formulation does not work well for populations that exhibit continuous 
reproduction over time, turn over rapidly (have high fishing mortality rates F), and/or exhibit 
continuous spatial mixing among local sites.  Such dynamics characterize some commercially 
important stocks, such as shrimps and smaller tunas.  For such species, it may be better to treat 
recruitment, growth, and mortality rates as all varying continuously over time. 

Fortunately, it is simple to derive the continuous-time analog of eqs. (1)-(2), under basically the 
same assumptions: knife edge recruitment to fishing at age a=k, constant natural mortality rate M, 
and weight growth rate approximated by the same decelerating relationship 

 dw/da=κ(w∞-w(a))        (3) 

that leads to the Ford-Brody version of the vonBertalanffy growth model.  The derivation begins by 
noting that when reproduction is continuous over time, exploitable biomass B(t) can be 
represented by 

       (4) 

Differentiating this integral with respect to t, while noting that 
dB(a,t)/dt=w(a,t)dN(a,t)/dt+N(a,t)dw(a,t)/dt, dN(a,t)/dt=-(F+M)N(a,t) and noting that input rate 
to the biomass integral is the continuous biomass recruitment rate w(k)R(t), it is easily seen that 
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the rate of biomass change is given by a sum of integral terms over age, with these integral terms 
being B(t) and N(t).  This sum of terms, along with the obvious rate equation for N(t), constitutes 
the continuous delay-differential model 

 dB(t)/dt=w(k)R(t)+ κw∞N(t)-(Z(t)+κ)B(t)    (5) 

 dN(t)/dt=R(t)-Z(t)N(t)      (6) 

Here, Z(t)=F(t)+M is the total instantaneous mortality rate, assumed to vary over time with 
changes in fishing mortality rate F(t).  These equations can be easily extended to include emigrate 
rate (as an additional component of Z(t)) and immigration rates from other populations/sites, as 
added rate terms to both dB/dt and dN/dt.  It is simple to numerically integrate the equations over 
time for arbitrary recruitment R(t) and F(t) rate patterns, and to link recruitment rate to biomass 
at time t-k using functions such as the Beverton-Holt, R(t)=aB(t-k)/(1+bB(t-k)), to create delay-
differential model forms. 

To ensure that eqs. (5)-(6) do exactly represent the dynamics of total biomass and numbers for age 
structured populations that meet the basic assumptions of age-independent mortality rate and 
linearly declining growth rate, I constructed a fully age-structured accounting model with very 
small age-time increments Δa,Δt<0.1, and forced this model with complex R(t) and F(t) patterns.  
The biomasses and numbers summed over age for this model do indeed track the simple model 
predictions more and more precisely as the age-time increment becomes smaller (Fig. 1). 

Intuitively, eq. (5) says that rate of biomass change has three components.  One is the obvious 
recruitment addition rate w(k)R(t).  The second is an addition rate proportional to fish numbers, 
κw∞N(t), basically representing the effect of food consumption on growth rate where the weight 
growth model dw/dt= κ(w∞-w) in essence assumes that feeding rate per individual fish in N(t) is 
independent of body weight.  The third term, -(Z(t)+κ)B(t), represents biomass loss to all causes of 
loss, including instantaneous body mass metabolic loss represented by κ. 

 

Equilibrium predictions of biomass, yield, and average body size 
The continuous rate formulation results in very simple predictions of equilibrium biomass and 
numbers, under constant R(t) and F(t) conditions.  Solving eq. (5)-(6) with the rates set to zero, we 
obtain 

       (7) 

 N∞=R/Z        (8). 

Equilibrium yield Y∞ per time is then given by just Y∞=FB∞, and equilibrium mean body weight B/N 
is given by the ratio of eq. (7) to eq. (8).   

To include a stock-recruitment relationship in the equilibrium prediction, e.g. R=aB/(1+bB), we 
simply note that B∞ in eq. (7) can be written as B∞=BPR x R, where biomass per recruit BPR is given 
as function of Z by 

       (9) 

Using this biomass per recruit, the equilibrium recruitment rate is predicted as the stock-
recruitment function function of it, e.g. R=aR.BPR/(1+bR.BPR), which is easily solved for R, i.e. 
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 R=(aBPR-1)/(bBPR).       (10) 

That is, we choose an F, calculate Z and BPR from eq. 9, then predict the equilibrium R from eq. 
(10), while noting that R<0 implies extinction under the chosen F. 

Eqs. (7)-(8) provide an interesting prediction of how equilibrium average body weight =B/N 
ought to vary with Z, namely 

        (11) 

which can be solved for Z to provide an estimate of Z given and the growth parameters: 

        (12) 

Note that this estimator for Z approaches infinity as decreases toward wk, and is very similar to 
the one proposed by Beverton and Holt for estimating Z from mean body length.   

In fact, eq. (12) points out how the whole model structure above can be used not only to predict 
changes in biomass, but also changes in total population length L(t) and mean body length 
L(t)/N(t).  For modeling length dynamics and changes in mean length over time, κ becomes just 
the vonBertalanffy “growth” (metabolic) parameter K, and w∞ becomes the standard 
vonBertalanffy L∞. 

 
Exact time solutions for piece-wise constant recruitment and fishing patterns 

There are simple analytical solutions for the rate eqs. (5)-(6) in the case that recruitment and 
fishing mortality rates R and F can be treated as piece-wise constant, i.e. constant over short time 
intervals Δt with step changes at the start of each interval.  Over any such interval, the solutions 
can be found by using integration factors, resulting in exact predictions of numbers and biomass at 
the end of each interval given starting values: 

N(t+ Δt)= N∞+[N(t)-N∞]e-Z Δt       (13) 

B(t+ Δt)= B∞+w∞[N(t)-N∞]e-Z Δt+{B(t)-B∞-w∞[N(t)-N∞]}e-(Z+κ) Δt  (14) 

Here, N∞ and B∞ are the equilibrium (asymptotic) values from eq. (7)-(8) that would result if F and 
Z were to remain constant for much longer that Δt.  Equations (13)-(14) show that N(t) and B(t) are 
predicted to dampen toward the equilibrium values N∞ and B∞ as Δt increases, given no changes in 
F and R.  Catch in numbers C and yield Y over the interval t to t+ Δt are given by integrating eqs. 
(13-14) times F over time: 

C= FN∞Δt +F[N(t)-N∞](1-e-Z Δt)/Z      (15) 

Y= FB∞Δt+Fw∞[N(t)-N∞](1-e-Z Δt)/Z+F{B(t)-B∞-w∞[N(t)-N∞]}(1-e-(Z+κ) Δt)/(Z+κ) 

          (16). 

Mean body weight of fish in the catch over the interval Δt is then given by Y/C.  Note that eqs. (15)-
(16) each consist of an equilibrium component FXΔt where X is equilibrium numbers or biomass 
under the input F and R, plus a component representing deviation of N(t) and B(t) from 
equilibrium.  Note also that for all the piece-wise Δt  predictions of eqs. (13)-(16), the equilibrium 
values N∞,B∞ used in the calculation are for the constant R predicted just for the interval Δt, not the 
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long-term equilibrium R predicted from a stock-recruitment relationship, i.e. not the R predicted 
from eq. (10). 

It is common in fisheries for the weight at recruitment wk to be less than the weight at maturity wm, 
so that fish are subject to mortality rate F+M for some time period tm before they mature.  It is 
possible to set up the delay-differential model to explicitly model changes in spawning biomass S(t) 
for such cases, substituting wm for wk in the equilibrium biomass per recruit calculations and 
setting recruitment rate RS(t) to the spawning biomass to be RS(t)=R(t-tm)e-Z*tm where Z* is the 
mean total mortality rate over time t-tm to t.  But numerical simulations show that S(t) as a 
proportion of B(t) tends to closely track the moving equilibrium proportion S(t)/B(t) given by 

 S(t)/B(t)≈e-Ztm(wm+ κw∞/Z)/( wm+ κw∞/Z)    (16a).   

This ratio can be multiplied by B(t) from eq. (14) to give an approximate S(t) for use in stock-
recruitment equations like the Beverton-Holt, i.e. R=aS/(1+bS).  Typically, the effect of such 
accounting for fishing mortality before maturity is to give lower estimates of Fmsy, substantially so 
when fish are exposed for a long tm period (e.g. up to 5 years for long-lived species). 

While the exact solution eqs. (13)-(14) look quite different from the discrete time delay-difference 
model of eq. (1)-(2), they can in fact be expressed in a very similar format, with “minor” differences 
related to the assumption of continuous recruitment and harvest mortality: 

N(t+ Δt)= s*(t)N(t)+ R(t)(1-s*(t)))/Z+     (17) 

B(t+ Δt)= s*(t)[α*N(t)+ρ*B(t)]+wkR(t)H*      (18) 
where the starred survival and growth rate factors are given by 

 s*(t)=e-(F+M)Δt        (19) 

 ρ*=e-κΔt        (20) 

α*=w∞(1-ρ*)        (21) 

 H*=[1- ρ*s(t)]/(Z+κ) +κw∞[1- ρ*s(t)]/[wkZ(Z+κ)]-w∞s(t)(1- ρ*)/(w(k)*Z) 

          (22) 

The complex recruitment “correction” factor H* looks formidable, but for reasonable survival and 
growth parameters typically quite close to just Δt, i.e. H* ≈Δt.  Note that as for the discrete time 
model, s* and H* vary over time while ρ* and α* do not change except in cases where the growth 
curve varies over time. 

 

Treating Fmsy and MSY as leading parameters for calculation of 
recruitment parameters 
For parameter estimation, it is often convenient to follow the approach of Schnute and Kronlund 
(1996) and Forrest et al. (2008), where Fmsy and MSY are treated as leading parameters and the 
Beverton-Holt stock-recruitment parameters a,b are calculated from these.  For given values of 
Fmsy and MSY, the calculation involves three steps: 

1) calculate BPR at Fmsy: =[w(k)+κw∞/(Fmsy+M)]/(Fmsy+M+κ) (23) 

2) calculate  (24) 
 (evaluated at Z=Fmsy+M) 
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3) calculate a=1/( +Fmsy ) and b=Fmsy*(a* -1)/MSY  (25). 

This derivation follows from noting that equilibrium yieldY=F (a -1)/(b ) and that the 
derivative of Y with respect to F must equal 0.0 at F=Fmsy.  Note that the calculation can result in 
negative (nonsensical) values of a and b; this arises in cases where the growth parameters imply a 
relatively low Fmsy independent of the stock recruitment parameters, i.e. growth overfishing at 
lower F than the Fmsy trial value entered for the calculation.  In such cases, the Fmsy trial value 
should be rejected as physically impossible during parameter estimation searches, MCMC trials, 
etc. 

 
Using predicted changes in mean body weight in model fitting 
Since the model predicts changes in mean body weight in response to changes in recruitment and 
fishing mortality rate, i.e. , it is tempting to use comparisons of observed and 
predicted mean weights in fitting the model to data, just as we would typically use size-age 
composition data.  Indeed, Fournier and Doonan (CJFAS, 1987) have noted that size distribution 
moments (mean, variance, …) appear to be just as useful as full size distributions in model fitting. 

When using predicted mean weights in model fitting, care must be taken in estimation of the 
observed mean weight in the catch and in estimation of the weight growth parameters when the 
field data are body lengths and weight is estimated from a length-weight relationship (w=aLb, 
L=body length).  It is tempting to calculate mean weight at age from mean lengths predicted from a 
length growth curve fit, then estimate the Ford-Brody parameters from the resulting estimates of 
mean weight at age.  This results in a downward bias in estimates of both w(k) and w∞, because of 
the nonlinear relationship between weight and length.  Actually, mean weight is expected to differ 
from weight at the mean length at age by a multiplicative factor, approximately 1+3.0CV2 if b≈3.0, 
where CV is the coefficient of variation in body length at age (typically in the range 0.05-0.15).  
More precisely, the multiplier on CV2 for predicting mean weight from mean length is b(b-1)/2.  So, 
if the estimated mean length at age a is , mean weight at that age is given approximately by  

,       (26) 
and it is this that should be used in estimating w(k) and w∞. 

Failure to use corrected mean weights in estimation of the weight growth parameters leads to 
underestimates of the mean weights , and model fitting procedures will try to increase the 
predicted mean weight to fit observed means (calculated from individual fish sample lengths) by 
reducing the modeled fishing mortality rate.  That is, failure to make the mean weight correction in 
eq. 26 can lead to severe downward bias in estimation of historical fishing mortality rates. 

 

Approximate estimates of recruitment rates over time given biomass 
over time 
Suppose we have accurate annual biomass estimates B*(t) of the vulnerable biomass, e.g. from 
annual surveys, and of Z(t) as M plus catch C(t) divided by approximate mean biomass 
(B*(t+1)+B*(t))/2.  Then assuming that numbers N(t) stay fairly close to the equilibrium R(t)/Z(t), 
eq. (14) reduces to 
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 B*(t+1)≈R(t)BPR(t)+[B*(t)-R(t)BPR(t)]e-Z(t)-κ   (27), 

where BPR(t)=[wk+κw∞/Z(t)]/[Z(t)+κ] is the equilibrium biomass per recruit for mortality rate 
Z(t).  We can solve eq. (27) for the approximate recruitment rate over year t, as  

 R(t)≈[B*(t+1)-B*(t) e-Z(t)-κ)]/[BPR(t)(1- e-Z(t)-κ))]   (28). 

In simulation tests, this approximation typically tracks the actual recruitment rate quite closely 
except during periods of very rapid biomass change, provided Z(t) is reasonably large (0.5 or 
higher).  The approximate estimates can be used directly for stock-recruitment parameter 
estimation, or to at least provide initial estimates of recruitment anomalies from stock-recruitment 
models when model fitting includes estimation of the anomaly time series. 

 
Alternative prediction of biomass per recruit using the Beverton-Holt 
model 
The basic weight growth model (eq. 3) is not a good approximation for cases where the relative 
length at recruitment (Lk/L∞) is less than 0.4 (wk/w∞ less than 0.064).  In such cases, an option for 
predicting the equilibrium biomass per recruit while still assuming knife-edge selectivity is to use 
the classical Beverton-Holt biomass and yield-per-recruit theory based on assuming von 
Bertalanffy length growth and weight varying as L3.  For fish recruiting at relative age τ=-ln(1- 
Lk/L∞)/K where K is the  vonBertalanffy growth coefficient, and total mortality rate Z=F+M, the 
Beverton-Holt (their eq. 4.4 integrated to infinite age) prediction of equilibrium vulnerable 
biomass per recruit is given by  

  BPR=w∞eZτ{e-Zτ/Z -3e-(Z+K)τ/(Z+K)+3e-(Z+2K)τ/(Z+2K)+e-(Z+3K)τ/(Z+3K)} (29). 

When this equation is used for prediction of B∞= BPR(t)xR with BPR(t) from eq. (9) in equations 
like (13)-(14) and (27)-(28) for predicting biomass and estimating recruitment over time (with Z 
changing from year to year), the growth coefficient κ can simply be replaced by K, but a bit better 
predictions are obtained with a lower value like K/2 that implies slower damping of biomass 
toward its R-dependent equilibrium B∞.  An even simpler option is to just plot the predicted 
relationship between BPR and F for eqs. (9) and (29), then adjust the coefficient κ for eq. (9) to 
match the prediction from K in eq. (29) and continue using the delay-differential formulation for 
time dynamics and equilibrium predictions. 

For cases where the length at recruitment is well below the length at maturity, BPR is not a good 
predictor of spawning biomass per recruit (SBPR) at high fishing rates.  If fish have knife-edge 
maturation at relative length Lmat and relative age τm=-ln(1-Lmat/L∞)/K, SBPR can be calculated 
simply by (1) solving eq. (29) with τ replaced by τm, and (2) multiplying the result by e-( τ- τm)Z to 
account for cumulative mortality between fishery recruitment and maturation.  The ratio 
SBPR/BPR behaves basically the same as the ratio S(t)/B(t) in eq. 16a above. 

 

Representing spatial equilibrium abundances in design of Marine 
Protected Areas 
Suppose a coastline has been divided into a large number i=1…na spatial areas, each 
representing a rearing site for some species and each potentially included in an MPA.  This 
approach to representing spatial population structure in MPA design has been widely used, 
eg Botsford (ref), Walters et al 2007.  It is quite simple to predict equilibrium (average long 
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term) spatial biomass and numbers for a species across these areas, assuming delay-
differential model growth and survival on each area, dispersive mixing of older fish 
between adjacent areas, dispersal of larvae more widely across areas, and spatial 
movement of fishing effort.  Calculation of the equilibrium requires an iterative approach 
that generally converges quite rapidly.  The iteration begins with initial estimates B(0)i  and 
N(0)i of the by-cell biomass and numbers of fish.  Here the superscript (k) designates 
iteration number.  Then the following are calculated for each iteration k=1,… until the 
estimates stop changing: 

1) Larval settlement: L(k)i=  (dij=distance from cell i to j, sdl=standard 

deviation of larval dispersal distances) 

2) Local recruitment: R(k)i=aL(k)i/(1+bL(k)i)  (a,b are Beverton-Holt stock recruitment 
parameters) 

3) Fishing mortality: F(k)i=FtotOiB(k-1)i/∑jB(k-1)jOj (Ok=1 if cell i is open to fishing, 0 
otherwise; Ftot is total potential fishing mortality rate summed over all cells) 

4) Biomass: B(k)i=[wkR(k)i+κw∞N (k-1)i +m{B(k-1)i-1+B(k-1)i+1}]/[F(k)i+M+2m+κ]  
(m=mixing rate between adjacent cells) 

5) Numbers: N(k)i=[wkR(k)i+m{N(k-1)i-1+N(k-1)i+1}]/[F(k)i+M+2m] 

Step 1) assumes that larvae are spread in a normal distribution pattern away from each 
source cell, with larval production in the cell proportional to biomass; alternative 
assumptions such as exponential decay of larval settlement with distance dij can easily be 
used.  Step 2) assumes that larvae settling in cell i remain in that cell until recruitment at 
weight wk, and are subject to density-dependent juvenile mortality during their rearing 
period.  Step 3) is a “gravity model” prediction of the allocation of Ftot to cells open to 
fishing, with gravity model weight OiBi for each cell; an alternative would be to use logit 
choice weights Oievi for the cells, with the utilities vi depending on Bi and other factors such 
as distance from fishing ports.  The step 4) and 5) biomass and numbers equations are just 
the model equilibria of eq. (7), with terms added to represent gain of fish from surrounding 
cells i-1 and i+1, and loss of fish (2m mortality terms) to those adjacent cells.  Note that by 
including mixing of both biomass and numbers, the model effectively represents effects on 
average body size in cell i of dispersal into that cell of larger or smaller average sized fish 
from adjacent cells. For example, the model predicts increase in average body size of fish in 
fishing sites adjacent to marine reserves, due to dispersal of fish from the reserves that are 
on average older and larger than in the fished sites. 

Estimation of the growth parameter κ from the vonBertalanffy K for 
length growth 
The growth equation (eq. 3) for weight assumed above is only an approximation for weight change 
in fish that follow vonBertalanffy length growth.  A good approximation for κ given the 
vonBertalanffy length growth K, at least for fish larger than 1/3L∞, can be obtained by the following 
regression procedure: 

j
j
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1. Calculate relative lengths (L/L∞) for several ages starting at the relative length Lk  at 
recruitment, from the recursive relationship La+1=1-e-K+Lae-K. Convert these to relative 
weights Wa=La3. 

2. For each age, calculate the “z-statistic” za=1-Wa. 

3. The ratio G=∑zaza+1/∑za2 is then an estimate of e-κ, i.e. κ=-ln(G). 

This calculation typically results in low values of κ/K for low (e.g. 0.4) values of Lk, increasing to 
near 1.0 for high Lk. 

As noted above, an alternative approach is to use the vonBertalanffy length growth model (and 
weight varying as L3) in the basic Beverton-Holt yield model (eq. 29) to predict BPR, then vary the 
κ parameter in eq. (9) so as to obtain a similar pattern of change in BPR with increasing fishing 
rate F from eq. (9) as from the more realistic Beverton-Holt calculation. 

 

Example application to Peru anchoveta 
We used the delay-differential structure to provide a computationally efficient model for exploring 
effects of a wide variety of alternative harvest strategies (harvest control rules) on future fishery 
values for the Peru anchoveta, under a wide variety of scenarios for future recruitment variation.  
For this application, we treated annual fishing mortality rates F(t) and recruitment rates R(t) as 
constant within each year (i.e. as piece-wise variable among years), which gives basically the same 
predictions of year-to-year variation in biomass B(t) (using eq. 13-16 above) as would be obtained 
with a model that accounts for the strong seasonal variation in both catches and recruitments that 
actually occur in the fishery, but avoids the difficult statistical problem of estimating year-to-year 
changes in the seasonal pattern of recruitment variation.  Using annual time steps also allowed us 
to fit the data to annual observed catches C(t) and acoustic survey biomass estimates S(t) available 
for most years since 1950, so as to obtain a long time series of estimates of how annual recruitment 
rates must have varied in order to have produced the observed catches and abundance trends.  To 
check for possible bias due the annual time step, we also fit a model with monthly time steps, using 
historical monthly catches and with seasonality in recruitment, and a fully age-structured model 
with monthly time steps developed by Ray Hilborn and John Payne (U. Washington, pers. comm.). 

For fitting the model to historical data, we first obtained independent estimates of the natural 
mortality rate M (we just assumed M=1.0) and body growth parameters w(k), κ, and w∞. To obtain 
the growth parameters, we first developed a weight growth curve (weights w(a) at integer ages a) 
using estimates of vonBertalanffy length-growth parameters and a length weight relationship.  
Assuming recruitment mainly near age k=1 (when length is near 11 cm), w(k) was estimated to be 
12 g and w∞ to be 68 g. Noting that eq. (3) integrates to the Ford-Brody relationship w(a)=α+ρw(a) 
where ρ=exp(-κ), we regressed w(a+1) on w(a) to obtain ρ=0.55 and κ=0.59. 

 

Recruitment variation over time was modeled as a Beverton-Holt relationship with R(t) dependent 
on spawning biomass B(t) the previous year i.e, R(t)=aB(t-1)/(1+bB(t-1)) as in the derivations 
above, but modified for each year by “environmental “ recruitment anomalies W(t).  We examined 
two alternative assumptions about the W(t) cause changes in R(t): (1) “alpha” variation where the 
Beverton-Holt “a” parameter was multiplied each year by exp(W(t)) to simulate density-
independent variation in survival rate from egg to recruitment, and (2) “beta” variation where the 
Beverton-Holt “b” parameter is multiplied by exp(W(t)) to simulate variation in recruitment 
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carrying capacity associated with factors like contraction the spawning range leading to smaller 
area over which juveniles are distributed (and compete).  For model fitting, we used eqs. (23-25) to 
calculate average a,b from leading parameters Fmsy and Umsy.   For the monthly time step model, 
we predicted relative recruitment for each month of the year, assuming similar monthly pattern for 
all years, and applied these monthly relative values to the predicted annual recruitment from the 
Beverton-Holt equation using the previous year’s spawning biomass. 

In some years, there has apparently been substantial discarding of juvenile anchoveta (8-10cm) too 
small to be attractive for processing.   Absent data on such discard rates, we modeled discarding 
impact by multiplying the R(t) prediction for each year by exp(-FJ(t)) where FJ(t) is a guess at the 
fishing mortality rate experienced by juveniles year t. We set FJ equal to F(t) for years with very 
weak recruitment (W(t)<<0), and to values near 0 for strong recruitment years (W(t)>>0), with  
FJ decreasing in a logistic pattern with increasing W(t).  Note absent direct data on discarding 
rates, we might just as well have excluded the juvenile multiplier so as to have the discarding 
effects estimated as a hidden component of the W(t) estimate for each year. 

In order to force the model to predict catches near the historical observed values for other model 
parameters that predict reasonable (not too low) B(t) trends, we used the “stock reduction 
analysis” approach of setting F(t)=C(t)/B(t) where C(t) is observed historical catch divided by 
model simulated biomass B(t).  This approach essentially places harsh bounds on the population 
dynamics model parameters, since parameter combinations that predict B(t) too low lead to huge 
increases in F(t) and hence “depensatory” collapse of the simulated stock size.  The same approach 
was used with the monthly time step model and the Hilborn-Payne age-structured model. 

We fitted the model to data by varying B(1950), Fmsy, Umsy, and the recruitment anomalies 
W(1950)-W(2014) so as to minimize a simple negative log likelihood function.  To construct this 
function, we assumed that the survey indices had log normal variation around B(t), with a scaling 
parameter q representing possible incomplete surveys, i.e. 

 S(t)=qB(t)ev(t)        (27), 

and observation variance σ2v.We further assumed a normally distributed prior probability for the 
W(t), i.e. each W(t) distributed as N(0,σ2W). Under these assumptions, the concentrated negative 
log likelihood (actually a log posterior density under the normal prior assumption for W(t)) is given 
by 

 NLL = ∑t(z(t)-lnq)2/ σ2v +∑tW(t)2/ σ2W      (28), 

where z(t) is the “z statistic” z(t)=ln(S(t)/B(t) and lnq is the arithmetic mean of  the z(t) as derived 
in Walters and Ludwig (1994).  We used Solver in Excel to minimize NLL. Note that there is no way 
to directly estimate the observation and recruitment anomaly variances directly from the data, i.e. 
it is not possible to say how much of the variation (not explained by catches) in the S(t) was due to 
recruitment variation and how much to measurement errors.  Increasing  σ2W leads to attributing 
more of the S(t) variation to recruitment anomalies and less to measurement errors.  To be safe in 
terms of assuming considerable recruitment variation, we set σ2v = 0.01 and σ2W = 0.6.  This 
combination leads to high variability over time in the W(t) estimates, and B(t) estimates close to 
the  observed S(t).  Interestingly, the estimates of B(1950),Fmsy, and Msy that minimize NLL are 
quite insensitive to the assumed variances.  For the monthly time step model, we included the 12 
monthly relative recruitments in the set of parameters to be estimated, and predicted survey 
abundances for the specific times that these were collected (in addition to the average annual 
surveys used in the annual model fitting).  
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Model fits to the catch and S(t) data along with estimates of the anomaly patterns W(t) for the 
“alpha” and “beta” recruitment variation assumptions, for both annual and monthly time steps, are 
presented in the Excel spreadsheet “anchoveta fitting models.xlsx”.  The same Excel spreadsheet 
but with table functions used for policy exploration (which drastically slow model fitting) is 
provided in “anchoveta policy models.xlsx”.  Note that for fitting we forced a relatively high 
recruitment compensation ratio of 10 (and hence Fmsy) for all cases (this corresponds to the 
“steepness” parameter h=0.71); best fits when Fmsy was allowed to vary in the “beta” variation case 
were unrealistically high, particularly for the monthly model.  All model versions, including the 
Hilborn-Payne age structured model, gave very similar historical biomass reconstructions (fit to 
historical data), predicted very similar future biomass patterns given similar harvest policies, and 
resulted in similar estimates of historical recruitment anomalies (Fig. 3,4,5).  Biomass 
reconstructions were all similar to those reported in the stock assessment by Oliveros-Ramos et al. 
(2010), and for earlier years by Pauly et al. (1987) and Pauly and Soriano (1987) using VPA and by 
Santander (1987) using egg surveys. 

The two alternative models for recruitment variation give similar maximum likelihood estimates 
for MSY, but somewhat different Fmsy estimates: 

 

alpha 
model 

beta 
model 

Fmsy 0.50 1.1 

MSY 7.65 7.67 

The beta model is somewhat more optimistic in its estimate of Fmsy.  But when both models are 
simulated over time with alternative harvest control rules and future recruitment anomaly 
patterns, they give very similar predictions of future abundance and catches.  When the model was 
constrained to fit the biomass survey data without any assumption about the surveys missing fish 
(i.e. with q=1 in eq. 27), model fits to the survey data look very similar to the case with uncertain q, 
but with somewhat lower MSY and higher Fmsy: 

 

alpha 
model 

beta 
model 

Fmsy 1.05 1.1 

MSY 6.45 6.49 

So, the basic estimates of management reference points are somewhat sensitive to assumptions 
about scaling of the survey data, particularly Fmsy. Further, Fmsy, which depends on the stock 
recruitment “a” parameter but not the “b” parameter, is poorly determined by the data, because 
there are no observations at very low spawning biomass (see Fig. 5). 

 

MSY and Fmsy estimates from the monthly model with q=1 were generally similar to those for the 
annual model, but are not that meaningful because of predicted seasonality in catches.  For the 
alpha variation recruitment case, the monthly model gave somewhat lower MSY (3.71 mmt) and 
Fmsy (0.81); for the beta case, Fmsy was higher (1.75) but time simulations with the seasonal catch 
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variation (seasonal allocation of annual quota) did not predict that the stock would be sustainable 
under such high annual F.  Recruitment anomaly patterns were very similar for all four model 
cases (alpha variation, beta variation, annual versus monthly simulation step).   

The monthly model fitting and the Hilborn-Payne age structured model gave very similar seasonal 
biomass patterns, with two strong recruitment peaks per year, in February and November.  The 
February peak agrees with the two-pulse recruitment pattern found or assumed by Oliveros-Ramos 
and Pena (2011), but they placed the second peak earlier, in August.  We obtained distinctly better 
fits to the pattern of seasonal variation in survey abundances for recent years, with the later peak.  
However, the model did not show as severe a decline in abundance for October-December as seen 
in a few survey years (2002-2004, 2014), suggesting that possibly the second recruitment peak did 
not actually occur or was much smaller than average in those years.  Very similar biomass 
reconstructions were obtained with the Hilborn-Payne model when the seasonal recruitment 
pattern was forced to follow the general pattern suggested by Perea et al. (2011) with spawning 
peaks in September and February. 

As is common in stock assessment models, there is a basic confounding between estimates of stock 
size and productivity, i.e. we cannot tell for sure whether the data came from a large, unproductive 
stock or a smaller, productive one.  For the baseline model fits, we obtained survey q estimates (eq. 
27) of 0.7 for the alpha model and 0.5 for the beta model, implying stock biomass approaching 
double the survey biomass.  This does not mean that harvests could be higher, since Fmsy in both 
cases was low (implying low recruitment compensation ratios, i.e. high sensitivity of recruitment to 
stock size).  If we force the estimation to use a higher q, i.e. force the model biomasses to be lower 
and closer to the survey estimates, the model still fits the survey data well at least for the beta 
recruitment case but with higher estimates of Fmsy (stronger recruitment compensation) and 
somewhat lower estimates of MSY.  For the alpha variation case, we could not get the model 
biomass estimates to be close to the surveys for at least some years, though the alpha model fit 
better (lower NLL) when q was allowed to vary as in eq. 28.  Fortunately, forced changes in the 
assumed survey catchability and associated changes in estimates of Fmsy and MSY do not cause 
large changes in predicted future catch patterns under alternative harvest control rules and 
patterns of recruitment variation.  Interestingly, the monthly model did not give low q estimates 
for either the alpha or beta model, instead giving q near 0.9 (implying the surveys underestimate 
biomass by only 10%). 

All the model fits display the strong recruitment “regime shift” pattern documented by other 
researchers (Cahuin et al. 2009; Oliveros-Ramos and Pena 2011), with the alpha and beta models 
diverging sharply in their predictions of reproductive performance at very low stock sizes (Fig. 5).  
But note in Fig. 5 that there are no observations for spawning biomass below 2mmt, and that the 
alpha and beta models predict similar recruitment rates per spawner for higher biomasses within 
each of the regime periods. While some of the model fits appear to statistically favor (based on nll 
and AIC comparisons) the alpha model, others favor the beta model.  Application of Kalman filter 
methods to estimate alpha vs beta variation (Britten et al. 2016; Szuwalski et al. 2017 ms in review) 
also appear to favor the beta model.  But as evident from the lack of differences in predictions over 
the range of observed spawning abundance, such statistical comparisons are highly suspect, and it 
would be prudent to heed the warnings from the alpha models that strong recruitment 
compensation might not lead to rapid population recovery if the stock declines to below 2mmt for 
any reason. 

Low estimates of Fmsy and recruitment compensation can be symptoms of long-term changes in 
recruitment carrying capacity.  It is easy to show with population simulations where the Beverton-
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Holt “b” parameter is changing slowly (asymptotic maximum recruitment changing between low 
and high recruitment “regimes”) that the stock-recruitment slope (“a” parameter) is likely to be 
badly biased downward, basically because both recruitment and spawning stock size decline 
together when recruitment carrying capacity decreases so as to make the apparent stock-
recruitment relationship have a strong positive slope (low “a” value).  But if this is actually what 
has been happening, it simply means that the stock sustain higher fishing rates at low stock size 
without collapsing completely, i.e. the stock is a bit more resilient than we have estimated, but it 
does not mean that high fishing rates should be routinely allowed during periods of low 
productivity and biomass. 

To test sensitivity of the results to uncertainty about the natural mortality rate (M) and growth 
parameters, estimation trials were conducted with a wide range of M values (0.8 to 2.0) and a 
narrow range of alternative κ values, 0.5 to 0.65 (w∞ does not affect the estimation because of the 
scaling of wk as a value relative to it, i.e. units of weight measurement are arbitrary, and anchoveta 
growth has varied somewhat over time, but the parameters have been reasonably stable, see 
Palomares et al. 1987).  These estimation trials resulted in fits to the survey data indistinguishable 
from the base case, i.e. Solver simply made minor adjustments to the recruitment anomaly (W(t)) 
estimates so as to fit the survey data equally well. 

 
Management strategy evaluation for Peru anchoveta 
We used the fitted alpha and beta annual models to explore alternative strategies for long term 
harvest management, by simulating the fitted models forward in time for 80 years (2014-2094) 
with various scenarios for future recruitment variation (anomaly patterns W(t)) and under various 
feedback harvest control rules for varying allowable catches with changes in stock biomass.  We 
also ran some of these scenarios with the monthly models, to ensure that the basic policy 
predictions would be basically the same.  We did not attempt to simulate management “tactics”, i.e. 
the within-year implementation process for achieving target harvests or spawning abundances 
through the use of multiple surveys and open-closed fishing periods, and the “implementation 
errors” that might result from such tactics; much more complex models would be needed for that 
detailed evaluation.  To facilitate management “gaming” for efficient exploration of a wide variety 
of policy alternatives, we implemented the simulations in an Excel spreadsheet (“anchoveta policy 
models.xlsx”). 

Future scenarios for recruitment variation were generated several ways: (1) repeats of historical 
W(t) patterns, (2) cyclic patterns with alternative periods of between 20 and 40 years, and (3) 
autoregressive patterns W(t)=ρW(t-1)+v(t) with high autocorrelation ρ=0.8 and var(v)=0.15 to give 
variation with peaks and lows about as frequent as seen in the model fitting.  We included 
parameters to allow model users to generate really extreme future scenarios, such as catastrophic 
decline in future recruitments due to more frequent and violent El Nino events that might be 
associated with climate change, but did not evaluate harvest control rules for response to such 
scenarios since there is really nothing that can be done in the short term (5-10 yr) future to hedge 
against their long term impacts (the anchoveta stock turns over too rapidly to allow “stockpiling” of 
fish as a hedge against severe changes). 

We assumed that future management responses to changing abundance will involve use of a linear 
control rule for varying allowable annual catch or quota Q(t) as a function of the survey estimate 
B*(t): 

 Q(t)=s(B*(t)-Bmin) for B*(t)>Bmin and 0 for B*(t)<Bmin  (29). 
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Here Bmin is a stock size below which there would be no fishing, and s is basically the fishing 
mortality rate allowed on the surplus B*(t)-Bmin.  In previous optimization studies (reviewed in 
Hawkshaw and Walters 2015), it has been found that predicted long term yield is typically 
maximized by setting Bmin to an “optimum escapement” and s=1 (i.e. harvest all the surplus over  
Bmin each year), with Bmin perhaps varying over time with persistent changes in recruitment 
rates.  Walters and Parma (1996) suggested using a “fixed exploitation rate” strategy (Bmin=0 and 
s=Fmsy) for coping with long term recruitment variation, and showed that this rule gives near 
maximum long-term yields when recruitment carrying capacity but not recruitment curve slope 
(i.e. the beta model above) shows persistent changes.  The Hawkshaw-Walters optimum control 
rule for maximizing risk-averse utility (sum of log catches) is basically just eq. (29) with 
Bmin=Becon and s=MSY/(Bmsy-Becon), where Becon is a minimum stock size below which fishers 
would find it uneconomical to fish (income<cost). Other control rule alternatives for coping with 
environmental change are reviewed in Punt et al. (2013) and King et al. (2015).  We did not provide 
capability to evaluate arbitrary control rules such as the US “10-40 rule” since (1) there is no 
theoretical justification from dynamic optimization theory for using such rules with their intuitive 
approaches for hedging against overfishing risks via arbitrary minimum stock sizes and/or 
maximum fishing mortality rates at higher stock sizes, and (2) they are unnecessarily complex and 
difficult to explain to stakeholders.   

We did limited simulation testing of a variation of eq. (29) that attempts to account for persistent 
changes (regime shifts) in the recruitment anomalies W(t).  Motivated by the dynamic 
programming results in Hawkshaw and Walters (2015), we simply multiplied the Q(t) prescribed 
by eq. (29) times an expected “relative recruitment multiplier” (relative maximum recruitment a/b 
when stock-recruit a, b vary with W(t)), to give a “regime-adjusted quota” Qr(t) as 

 Qr(t)=Q(t)eW*(t)       (30) 

Here, W*(t) is the arithmetic mean of the most recent three recruitment anomalies W(t).  The basic 
effect of this quota adjustment approach is to reduce quotas when recent recruitment anomalies 
have been negative, and to increase it when anomalies have been positive.  We numerically tested 
“weaker” adjustments replacing W*(t) with kW*(t), k<1, and found that values of k<1 did not give 
improved simulated performance. 

We used three relatively simple performance measures to compare alternative harvest control 
rules: 

(1) Total future yield (or mean annual yield over next 80 years) 

(2) Total future log utility for catch (sum of ln[Q(t)+1] 

(3) Number of closed years with no fishing. 

Note that some policy options and future anomaly patterns resulted in complete stock collapse with 
little or no recovery over the 80 years; we did not include a separate performance measure such as 
“probability of stock collapse” since such scenarios resulted in very poor performance anyway, by 
all three of the measures.  

For each future scenario for recruitment variation, we used the Excel “Table function” to calculate 
the three performance measures for a grid of (Bmin, s) combinations in eq. (29), that is we ran 80 
year simulations for all combinations of Bmin=0,1,2,…,10 and s=0,0.1,0.2,…,1.0) to quickly display 
how each of the performance measures would vary with the harvest control parameters.  This 
essentially results in “optimization in policy space” (Walters and Hilborn, 1978; Moxnes 2003) and 
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quickly reveals tradeoffs between maximization of yield (total yield) versus stability of future yields 
(future log utility). 

Survey errors were represented by making B*(t) vary log-normally around the true January model 
biomass B(t), with coefficient of variation near the apparent value (0.1) that we found in the model 
fitting.  As noted by Moxnes (2003), increasing survey error causes the optimum harvest control 
rule to become nonlinear, i.e. to bend so as to approach a maximum Q(t) at high B*(t); this effect is 
approximated in the policy space optimization by highest total yields at values of s<1.0 when the 
survey CV was set very high.  Moxnes also noted that using a Kalman filter to represent more 
complicated assessment models for estimating B(t), as in Walters (2004), actually degrades 
management performance compared to just using the most recent survey estimate, so we did not 
explore more complex biomass estimation alternatives. 

Policy simulations for typical future recruitment anomaly choices generally resulted in lower 
optimum fishing rates and yields than would be predicted from a deterministic model using the 
fitted estimates of Fmsy, MSY, demonstrating the strong effects of stochastic variation and survey 
errors on future management performance (Fig. 6).  Somewhat surprisingly, the simulated pattern 
of variation in yield with changes in harvest control rule parameters was similar to the pattern 
shown in Fig. 6 for most of the patterns of future recruitment anomalies that we tested, i.e. the 
ranking of harvest control rule parameter options was not at all sensitive to assumptions about 
future recruitment variation.  For all variation patterns, simply having strong variation in quotas 
Q(t) with changes in biomass B(t), i.e. having reasonably low s and Bmin, resulted in reasonable 
protection of the spawning stock and good yields; “regime shifts” in recruitment parameters were 
basically accounted for automatically or implicitly through the effects of those shifts on biomasses 
B(t), without having to explicitly vary the control rule parameters from one regime to the next. 

We set up the spreadsheet models to allow “retrospective” comparisons of historical trends in catch 
and biomass to the trends that the model predict would have occurred if our harvest control rule 
options had been applied over the 1960-2016 period.  A surprising finding from such comparisons 
is that catches would not have been much different unless very extreme control rules (high Bmin, 
low slope) had been applied, i.e. historical catches were not far from “optimum”.  None of the 
harvest control rules would have completely prevented the collapse in 1972, but could have made 
the stock size collapse less severe, nor would they have led to much more rapid recovery.  This is 
basically because we treated the period of negative recruitment anomalies after 1971 as having been 
caused solely by environmental factors, i.e. we did not model the possibility that those anomalies 
were driven partly by reduction in recruitment carrying capacity due to spawning range contraction 
at lower stock biomasses. 

We found a very modest increase (around 11%) in average long-term yield by using the regime-
adjusted quota Q*(t) given by eq. (30), over a variety of alternative future recruitment anomaly 
patterns.  Using the regime-adjusted quotas gave much less (around 6%) improvement in mean log 
utility of catches; Hawkshaw and Walters (2015) found basically the same result, i.e. the best 
harvest control rule for maximizing catch does involve adjustments in response to persistent W(t) 
changes, but the best rule for maximizing log utility is nearly independent of the current W(t) or 
mean W*(t) of recent anomalies.   Comparing Q(t) with  Q*(t) catch and stock biomass patterns, it 
was apparent  that the modest gains from regime-adjusted quotas came mainly from increased 
catches during favorable recruitment regimes rather than from “protection” of the spawning stock 
during unfavorable regimes, i.e. predicted spawning biomasses were only trivially larger under the 
Q*(t) policies during negative W(t) regime periods. 
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Figure 1.  Two examples of how the continuous model exactly tracks total biomass and numbers predicted from a fully 
age-structured accounting model.  In case A, recruitment and F vary in arbitrary patterns over time.  In case B, there is an 
annual sinusoidal pattern in both recruitment and F, similar to the pattern seen in penaeid shrimp populations.  F 
pattern over time shown on the biomass plots, R pattern shown on the numbers plots. 
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Figure 2.  Comparison of fits to historical Peruvian anchoveta survey data for the annual alpha and beta recruitment 
variation models, and predictions of future abundance under one harvest control rule option (fixed escapement policy, 
4mmt base stock) and future recruitment anomaly regime (repeat of historical anomaly pattern). From “anchoveta fitting 
models.xlsx”, comparisons tab.  
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Figure 3.  Comparison of monthly model fits to historical Peruvian anchoveta survey data for the alpha, beta, and 
Hilborn-Payne models. Annual beta model fit from Fig. 2 included for comparison.  Note how the seasonal models fail to 
fully capture seasonal variation evident in surveys for some recent years.  From “anchoveta fitting models.xlsx”, 
comparisons tab. 
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Figure 4.  Annual recruitment anomaly patterns for Peruvian anchoveta estimated by fitting the various models. 
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Figure 5.  Regime patterns in the relationship between productivity as measured by recruitment rate per spawner and 
spawning stock biomass.  The low recruitment regime period represented by observations from 1972-1991, and the high 
regime periods by observations before 1971 and after 1991.  Alpha and beta Beverton-Holt model predictions for the 
regime periods shown as solid lines.  From “anchoveta fitting models.xlsx”, comparisons tab. 
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Figure 6.  Typical results from Excel table function for comparing harvest control rule choices.  Table rows are alternative 
choices for the slope s in the harvest control rule eq. (29), and columns are alternative choices for Bmin, the minimum 
stock size for fishing.  In this example, mean future yield is maximum at s=0.8 and Bmin=3 mmt (near a fixed 
escapement policy) while future utility is maximized at s=0.5 and Bmin=0, i.e. a fixed exploitation rate policy with fishing 
rate F=0.5.  Deterministic Fmsy for this case was 1.1, and MSY was 6.5, showing that stochastic recruitment effects 
generally result in substantially lower optimum exploitation rates and yields than would be predicted from a 
deterministic model. Recruitment anomaly sequence for all simulations was repeat of historical anomalies since 1950. 
  Mean annual catch 

  0 1 2 3 4 5 6 7 8 9 10 
             

0.2  4.01 3.86 3.71 3.55 3.39 3.23 3.07 2.91 2.74 2.58 2.42 
0.3  4.74 4.59 4.44 4.28 4.11 3.93 3.74 3.55 3.36 3.17 2.98 
0.4  5.04 4.95 4.83 4.69 4.52 4.35 4.16 3.96 3.76 3.55 3.34 
0.5  5.07 5.07 5.01 4.91 4.77 4.61 4.43 4.23 4.03 3.82 3.60 
0.6  4.92 5.06 5.07 5.02 4.91 4.77 4.61 4.42 4.22 4.00 3.79 
0.7  4.64 4.96 5.06 5.06 4.99 4.88 4.73 4.55 4.35 4.14 3.92 
0.8  4.29 4.81 5.01 5.07 5.04 4.94 4.81 4.64 4.45 4.25 4.03 
0.9  3.92 4.65 4.94 5.05 5.05 4.99 4.87 4.71 4.53 4.32 4.11 

1  3.60 4.48 4.86 5.02 5.06 5.01 4.91 4.76 4.58 4.38 4.16 

 
 Years with no 

fishing         
  0 1 2 3 4 5 6 7 8 9 10 

0.2  0 0 0 0 0 0 0 1.5 1.5 4 7.5 
0.3  0 0 0 0 0 0 0 1.5 1.5 4.5 8 
0.4  0 0 0 0 0 0 0 1.5 3.5 5.5 8.5 
0.5  0 0 0 0 0 0 0.5 2 4 5.5 10.5 
0.6  0 0 0 0 0 0 1.5 3 4 8 12 
0.7  0 0 0 0 0 0 1.5 3 5.5 8.5 13.5 
0.8  0 0 0 0 0 1 2 4 6 9.5 14.5 
0.9  0 0 0 0 0.5 1 3.5 6 6.5 11.5 14.5 

1  0 0 0 0 0.5 2 4 6 7 12.5 16 
             

  Mean log utility for future catches       
  0 1 2 3 4 5 6 7 8 9 10 

0.2  1.35 1.31 1.28 1.24 1.20 1.16 1.11 1.06 1.01 0.96 0.91 
0.3  1.48 1.45 1.41 1.38 1.34 1.29 1.24 1.19 1.13 1.08 1.02 
0.4  1.53 1.51 1.48 1.45 1.41 1.36 1.31 1.26 1.20 1.14 1.08 
0.5  1.54 1.53 1.51 1.49 1.45 1.41 1.36 1.30 1.24 1.18 1.11 
0.6  1.52 1.54 1.53 1.51 1.47 1.43 1.38 1.33 1.27 1.20 1.13 
0.7  1.49 1.53 1.53 1.51 1.49 1.45 1.40 1.35 1.28 1.22 1.15 
0.8  1.43 1.51 1.52 1.52 1.49 1.46 1.41 1.35 1.29 1.22 1.15 
0.9  1.37 1.48 1.51 1.51 1.49 1.46 1.41 1.36 1.30 1.23 1.15 

1  1.30 1.46 1.50 1.51 1.49 1.46 1.41 1.36 1.29 1.22 1.14 
 

         
            

 


